首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis and in vitro antibiotic activity of 16-membered 9-O-arylalkyloxime macrolides
Authors:Fu Hong  Marquez Saul  Gu Xiangrong  Katz Leonard  Myles David C
Affiliation:Department of Chemistry, Kosan Biosciences Inc., 3832 Bay Center Place, Hayward, CA 94545, USA. fu@kosan.com
Abstract:A series of novel 9-O-arylalkyloxime analogs based on three different 16-membered macrolide scaffolds-5-O-mycaminosyltylonolide (OMT), tilmicosin, and 20-deoxy-20-(3,5-dimethyl-1-piperidin-1-yl)-OMT-was synthesized. In vitro antibiotic activities were assayed against Gram-positive Streptococcus pneumoniae and Staphylococcus aureus and Gram-negative Haemophilus influenzae bacterial strains. Analogs derived from OMT (3-15) showed similar or better antibacterial activities against macrolide-susceptible strains and enhanced activities against macrolide-resistant strains compared with erythromycin A, tylosin, or OMT. Similar results were observed for tilmicosin 9-O-arylalkyloxime analogs (18-24). In contrast, most of the 20-deoxy-20-(3,5-dimethyl-1-piperidin-1-yl)-OMT analogs (25-33) showed reduced antibacterial activities compared with OMT. Ribosome-binding studies were performed on compounds 12 (OMT derivative), 20 (tilmicosin derivative), and 29 [20-deoxy-20-(3,5-dimethyl-1-piperidin-1-yl)-OMT derivative]. It was found that these compounds interacted with both domain V and domain II of the Escherichia coli 23S rRNA.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号