首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Isolation and physical mapping of temperature-sensitive mutants defective in heat-shock induction of proteins in Escherichia coli
Authors:Toru Tobe  Koreaki Ito and Takashi Yura
Institution:(1) Institute for Virus Research, 606 Kyoto, Japan
Abstract:Summary Mutants of Escherichia coli K12 that are partially or totally defective in induction of major heat-shock proteins and cannot grow at high temperature (42° C) were isolated by localized mutagenesis. These mutants carry a single mutation in the gene htpR (formerly hin) located at min 76 on the E. coli genetic map. Some mutants exhibit delayed (partial) induction of heat-shock proteins or require a higher temperature for induction than the wild type, whereas others are not induced under any of these conditions. The maximum temperature that allows growth varies among different mutants and is correlated with the residual induction capacity. Temperature-resistant revertants obtained from each mutant are fully or partially recovered in heat-shock induction. These results indicate that the inability of htpR mutants to grow at high temperature is due to the defect in heat-shock induction. In addition, a couple of mutants was found that produce significantly higher amounts of heat-shock proteins even at 30° C.The htpR gene has been cloned into plasmid pBR322 using the above mutants, and was localized to a DNA segment of 1.6 kilobase pairs. The mutants harboring certain palsmids that carry a part of htpR produce temperature-resistant recombinants at high frequency. This permits further localization of mutations within the htpR gene. Analysis of proteins encoded by each of the recombinant plasmids including the one carrying a previously isolated amber mutation (htpR165) led to the identification of a protein with an apparent molecular weight of about 36,000 daltons as the htpR gene product.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号