Visually Driven Activation in Macaque Areas V2 and V3 without Input from the Primary Visual Cortex |
| |
Authors: | Michael C. Schmid Theofanis Panagiotaropoulos Mark A. Augath Nikos K. Logothetis Stelios M. Smirnakis |
| |
Affiliation: | 1. Max Planck Institut für biologische Kybernetik, Tübingen, Germany.; 2. Imaging Science and Biomedical Engineering, University of Manchester, Manchester, United Kingdom.; 3. Departments of Neuroscience and Neurology, Baylor College of Medicine, Houston, Texas, United States of America.;University of Regensburg, Germany |
| |
Abstract: | Creating focal lesions in primary visual cortex (V1) provides an opportunity to study the role of extra-geniculo-striate pathways for activating extrastriate visual cortex. Previous studies have shown that more than 95% of neurons in macaque area V2 and V3 stop firing after reversibly cooling V1 [1], [2], [3]. However, no studies on long term recovery in areas V2, V3 following permanent V1 lesions have been reported in the macaque. Here we use macaque fMRI to study area V2, V3 activity patterns from 1 to 22 months after lesioning area V1. We find that visually driven BOLD responses persist inside the V1-lesion projection zones (LPZ) of areas V2 and V3, but are reduced in strength by ∼70%, on average, compared to pre-lesion levels. Monitoring the LPZ activity over time starting one month following the V1 lesion did not reveal systematic changes in BOLD signal amplitude. Surprisingly, the retinotopic organization inside the LPZ of areas V2, V3 remained similar to that of the non-lesioned hemisphere, suggesting that LPZ activation in V2, V3 is not the result of input arising from nearby (non-lesioned) V1 cortex. Electrophysiology recordings of multi-unit activity corroborated the BOLD observations: visually driven multi-unit responses could be elicited inside the V2 LPZ, even when the visual stimulus was entirely contained within the scotoma induced by the V1 lesion. Restricting the stimulus to the intact visual hemi-field produced no significant BOLD modulation inside the V2, V3 LPZs. We conclude that the observed activity patterns are largely mediated by parallel, V1-bypassing, subcortical pathways that can activate areas V2 and V3 in the absence of V1 input. Such pathways may contribute to the behavioral phenomenon of blindsight. |
| |
Keywords: | |
|
|