Rhizobia from Lanzarote,the Canary Islands,That Nodulate Phaseolus vulgaris Have Characteristics in Common with Sinorhizobium meliloti Isolates from Mainland Spain |
| |
Authors: | José Luis Zurdo-Pi?eiro Paula García-Fraile Raúl Rivas Alvaro Peix Milagros León-Barrios Anne Willems Pedro Francisco Mateos Eustoquio Martínez-Molina Encarna Velázquez Peter van Berkum |
| |
Abstract: | The stable, low-molecular-weight (LMW) RNA fractions of several rhizobial isolates of Phaseolus vulgaris grown in the soil of Lanzarote, an island of the Canary Islands, were identical to a less-common pattern found within Sinorhizobium meliloti (assigned to group II) obtained from nodules of alfalfa and alfalfa-related legumes grown in northern Spain. The P. vulgaris isolates and the group II LMW RNA S. meliloti isolates also were distinguishable in that both had two conserved inserts of 20 and 46 bp in the 16S-23S internal transcribed spacer region that were not present in other strains of S. meliloti. The isolates from P. vulgaris nodulated bean but not Medicago sativa, while those recovered from Medicago, Melilotus, and Trigonella spp. nodulated both host legumes. The bean isolates also were distinguished from those of Medicago, Melilotus, and Trigonella spp. by nodC sequence analysis. The nodC sequences of the bean isolates were most similar to those reported for S. meliloti bv. mediterranense and Sinorhizobium fredii bv. mediterranense (GenBank accession numbers {"type":"entrez-nucleotide","attrs":{"text":"DQ333891","term_id":"84872507","term_text":"DQ333891"}}DQ333891 and {"type":"entrez-nucleotide","attrs":{"text":"AF217267","term_id":"13810627","term_text":"AF217267"}}AF217267, respectively). None of the evidence placed the bean isolates from Lanzarote in the genus Rhizobium, which perhaps is inconsistent with seed-borne transmission of Rhizobium etli from the Americas to the Canaries as an explanation for the presence of bean-nodulating rhizobia in soils of Lanzarote.A remarkable attribute of Phaseolus vulgaris (common bean) is its ability to nodulate with rhizobia from at least 20 different legume genera (summarized in reference 1). Of particular relevance is the report by Ishizawa (16), who described P. vulgaris nodulation ranging from doubtful to good by 14 strains recovered from Medicago sativa, Medicago denticulata, and Melilotus alba, while nodulation of the latter three legumes by four bean strains was negative.At the time of the host range experiments, such as those described by Ishizawa (16), rhizobial nomenclature depended on the legume host of origin; the taxonomy of the strains was based on cross-inoculation groups. Consequently, no information was available about the genetic relationships among the rhizobial strains that originated from the different host legume genera and formed nodules on P. vulgaris. Eventually, rhizobial nomenclature based on the cross-inoculation groups was abandoned because of the many unexplainable and incongruous nodulation data (44). The cross-inoculation groups consisted of different rhizobial species within the single genus Rhizobium. Eventually, rhizobial taxonomy was expanded to several different genera based on estimates of their phylogeny (38). Phylogenies of bean-nodulating rhizobia were estimated from variations in the 16S rRNA gene sequence (39), even though subsequently it became clear that this method is significantly limited by histories of genetic exchange and recombination (6, 40). Most reported phylogenies of rhizobia nodulating P. vulgaris have placed them in the genus Rhizobium (3, 39), but several surveys with isolates from North Africa and Spain have demonstrated that rhizobia in the genus Sinorhizobium also nodulate this legume species (12, 23, 24, 25, 41), supporting the nodulation data originally published by Ishizawa (16). The number of isolates described as originating from nodules of P. vulgaris in the genus Sinorhizobium is small, and for the most part, from the published evidence, it has been suggested that they are affiliated with Sinorhizobium fredii. However, nodules of P. vulgaris growing in a single Tunisian soil where beans are cultivated yielded four isolates that, according to the data, appeared to support an affiliation with Sinorhizobium meliloti rather than S. fredii (25). Whether these four cultures were of the same rhizobial genotype constituting a single example of S. meliloti isolated from P. vulgaris is unknown.P. vulgaris was introduced into Europe as a crop plant as early as the 16th century (31) but never became a very important part of agriculture in Lanzarote, one of the Canary Islands that lie in the Atlantic Ocean to the west of the North African coast. Since there is no record of any nodulation studies with P. vulgaris cultivated on Lanzarote Island, the first objective of this study was to examine bean plants that had grown in Lanzarote soil for nodulation. Considering that the diversity of rhizobia able to nodulate bean plants is extremely wide, the second objective was to characterize the isolates originating from the nodules of plants grown in Lanzarote soil.(Part of this work was presented as a poster at the First International Meeting on Microbial Phosphate Solubilization, Salamanca, Spain, July 2002.) |
| |
Keywords: | |
|
|