首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Participation of Syndecan 2 in the Induction of Stress Fiber Formation in Cooperation with Integrin α5β1: Structural Characteristics of Heparan Sulfate Chains with Avidity to COOH-Terminal Heparin-Binding Domain of Fibronectin
Authors:Yuri Kusano  Kayoko Oguri  Yuko Nagayasu  Seiichi Munesue  Masayuki Ishihara  Ikuo Saiki  Hideto Yonekura  Hiroshi Yamamoto  Minoru Okayama  
Institution:a Clinical Research Institute, National Nagoya Hospital, Aichi, Japan;b Department of Biotechnology, Faculty of Engineering, Kyoto Sangyo University, Kyoto, Japan;c National Defense Medical College, Research Institute, Saitama, Japan;d Department of Pathogenic Biochemistry, Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, Toyama, Japan;e Department of Biochemistry, Kanazawa University School of Medicine, Kanazawa, Japan
Abstract:The present study provides direct evidence that syndecan 2 participates selectively in the induction of stress fiber formation in cooperation with integrin α5β1 through specific binding of its heparan sulfate side chains to the fibronectin substrate. Our previous study with Lewis lung carcinoma-derived P29 cells demonstrated that the cell surface heparan sulfate proteoglycan, which binds to fibronectin, is syndecan 2 (N. Itano et al., 1996, Biochem. J. 315, 925–930). We here report that in vitro treatment of the cells by antisense oligonucleotide for syndecan 2 resulted in a failure to form stress fibers on fibronectin substrate in association with specific suppression of its cell surface expression. Instead, localization of actin filaments in the cytoplasmic cortex occurred. A similar response of the cells was observed when the cells were treated to eliminate functions of cell surface heparan sulfates, including exogenous addition of heparin and pretreatment with anti-heparan sulfate antibody, F58-10E4, and with proteinase-free heparitinase I. Size- and structure-defined oligosaccharides prepared from heparin and chemically modified heparins were utilized as competitive inhibitors to examine the structural characteristics of the cell surface heparan sulfates involved in organization of the actin cytoskeleton. Their affinity chromatography on a column linked with a recombinant H-271 peptide containing a C-terminal heparin-binding domain of fibronectin demonstrated that 2-O-sulfated iduronates were essential for the binding. Inhibition studies revealed that a heparin-derived dodecasaccharide sample enriched with an IdoA(2OS)–GlcNS(6OS) disaccharide completely blocked binding of the syndecan 2 ectodomain to immobilized H-271 peptide. Finally, the dodecasaccharide sample was shown to inhibit stress fiber formation, triggered by adhesion of P29 cells to a CH-271 polypeptide consisting of both the RGD cell-binding and the C-terminal heparin-binding domains of fibronectin in a fused form. All these results consistently suggest that syndecan 2 proteoglycan interacts with the C-terminal heparin-binding domain of fibronectin at the highly sulfated cluster(s), such as IdoA(2OS)–GlcNS(6OS)]6 present in its heparan sulfate chains, to result in the induction of stress fiber formation in cooperation with integrin α5β1.
Keywords:heparan sulfates  syndecan 2  fibronectin  cell adhesion  stress fibers  cytoskeletal organization
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号