首页 | 本学科首页   官方微博 | 高级检索  
     


Phosphoinositide 3-kinase acts through RAC and Cdc42 during agrin-induced acetylcholine receptor clustering
Authors:Nizhynska Viktoria  Neumueller Ralph  Herbst Ruth
Affiliation:Center for Brain Research, Medical University of Vienna, Vienna, Austria.
Abstract:The formation of the neuromuscular junction (NMJ) is regulated by the nerve-derived heparan sulfate proteoglycan agrin and the muscle-specific kinase MuSK. Agrin induces a signal transduction pathway via MuSK, which promotes the reorganization of the postsynaptic muscle membrane. Activation of MuSK leads to the phosphorylation and redistribution of acetylcholine receptors (AChRs) and other postsynaptic proteins to synaptic sites. The accumulation of high densities of AChRs at postsynaptic regions represents a hallmark of NMJ formation and is required for proper NMJ function. Here we show that phosphoinositide 3-kinase (PI3-K) represents a component of the agrin/MuSK signaling pathway. Muscle cells treated with specific PI3-K inhibitors are unable to form full-size AChR clusters in response to agrin and AChR phosphorylation is reduced. Moreover, agrin-induced activation of Rac and Cdc42 is impaired in the presence of PI3-K inhibitors. PI3-K is localized to the postsynaptic muscle membrane consistent with a role during agrin/MuSK signaling. These results put PI3-K downstream of MuSK as regulator of AChR phosphorylation and clustering. Its role during agrin-stimulated Rac and Cdc42 activation suggests a critical function during cytoskeletal reorganizations, which lead to the redistribution of actin-anchored AChRs.
Keywords:acetylcholine receptors  neuromuscular junction  phosphoinositide 3‐kinase  MuSK  agrin
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号