首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Role of innervation on the embryonic development of skeletal muscle
Authors:G S Sohal  R K Holt
Institution:(1) Department of Anatomy, Medical College of Georgia, 30912 Augusta, GA, USA
Abstract:Summary The extent to which the motor innervation regulates the embryonic development of skeletal muscle was investigated by comparing changes in normal, aneural, and paralyzed superior oblique muscle of the duck embryo. The muscle was made aneural by permanently destroying the trochlear motor neurons with electrocautery on day 7 i.e., three days prior to innervation. Embryos were paralyzed by daily application of agr-bungarotoxin onto the chorioallantoic membrane from day 10 onwards. The differentiation of myoblasts and myotubes in the aneural muscle was severely affected and did not progress to the myofiber stage. A mass of dead cells in the aneural muscle was replaced by connective tissue. Although the differentiation of myoblasts and myotubes was also retarded in the paralyzed muscle, numerous muscle cells progressed to the myofiber stage. Neuromuscular junctions of normal ultrastructure were seen in all paralyzed muscles. Degeneration of some cells in the paralyzed muscle occurred but there was no evidence of a massive wave of cell death similar to that observed in the aneural muscle. These observations suggest that both the trophic factors from the nerve and the nerve-evoked muscle activity are essential for the execution of the developmental program of the muscle. Trophic factors may play a larger role in differentiation, and maintenance of the muscle than muscle activity.Supported by a grant from the Muscular dystrophy Association and a grant from NIHWe are grateful to Beth McBride and Greg Oblak for their technical assistance
Keywords:Avian skeletal muscle  Development  Normal  aneural  paralyzed muscle
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号