首页 | 本学科首页   官方微博 | 高级检索  
     


Stabilization of a metastable state of Torpedo californica acetylcholinesterase by chemical chaperones
Authors:Millard Charles B  Shnyrov Valery L  Newstead Simon  Shin Irina  Roth Esther  Silman Israel  Weiner Lev
Affiliation:Department of Neurobiology and Chemical Services, Weizmann Institute of Science, Rehovoth 76100, Israel.
Abstract:Chemical modification of Torpedo californica acetylcholinesterase by the natural thiosulfinate allicin produces an inactive enzyme through reaction with the buried cysteine Cys 231. Optical spectroscopy shows that the modified enzyme is "native-like," and inactivation can be reversed by exposure to reduced glutathione. The allicin-modified enzyme is, however, metastable, and is converted spontaneously and irreversibly, at room temperature, with t(1/2) approximately 100 min, to a stable, partially unfolded state with the physicochemical characteristics of a molten globule. Osmolytes, including trimethylamine-N-oxide, glycerol, and sucrose, and the divalent cations, Ca(2+), Mg(2+), and Mn(2+) can prevent this transition of the native-like state for >24 h at room temperature. Trimethylamine-N-oxide and Mg(2+) can also stabilize the native enzyme, with only slight inactivation being observed over several hours at 39 degrees C, whereas in their absence it is totally inactivated within 5 min. The stabilizing effects of the osmolytes can be explained by their differential interaction with the native and native-like states, resulting in a shift of equilibrium toward the native state. The stabilizing effects of the divalent cations can be ascribed to direct stabilization of the native state, as supported by differential scanning calorimetry.
Keywords:Acetylcholinesterase  calorimetry  chemical chaperone  conformational change  forces and stability  molten globule  protein folding
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号