首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Carotenoid composition and down regulation of photosystem II in three conifer species during the winter
Authors:William W Adams III  Barbara Demmig-Adams
Institution:P. Rinne (corresponding author) and A. Saarelainen, Dept of Botany. Univ. of Oulu, SF-90570 Oulu, Finland: O. Junttial. Dept of Plant Physiology and Microbiology, Univ. of Tromsø, N-9037 Tromsø. Norway.
Abstract:Seedlings and coppice shoots of Betula pubescens Ehrh. were grown under controlled conditions designed to simulate the annual growth cycle, and a water stress was introduced during the short day (SD). Alleviation of hud dormancy after increasing periods at chilling temperatures was tested under long day (LD) conditions. Abscisic acid (ABA) was analysed in leaf and bud samples by gas chromatography-mass spectrometry using 2H4]ABA as the internal standard. Elongation growth of coppice shoots was faster than that of seedlings under both LD and SD conditions, while the final growth cessation occurred in a similar manner and was not affected by water stress, which significantly reduced growth rate in both plant types. Bud dormancy gradually decreased with increasing length of chilling, starting from the basal parts of the plant axis. Water stress did not retard hudhurst. but rather improved it in the chilled coppice shoots and in the non-chilled and partially chilled seedlings. Water content of buds was higher in coppice shoots than in seedlings, but after exposure to SD. it gradually decreased to 45% in both plant types and was not affected by water stress or chilling. The ABA level in both leaves and buds increased during SD treatment and was" enhanced by water stress. No clear differences in bud ABA level were found between the seedlings and coppice shoots under SD conditions, although coppice shoots had less ABA during the preceding LD conditions. There was, in general, no clear effect of chilling on bud ABA level. Budbursl in chilled, single-node cuttings was inhibited by external ABA treatment, which raised the internal ABA levels 10 to 150 times above normal. The observed correlation between ABA level and water content in buds during induction of dormancy under SD and water stress conditions indicates a possible role for ABA in the regulation of dormancy.
Keywords:Abscisic acid  Betula pubescens  birch  bud dormancy  chilling  coppice shoot  growth cessation  water stress
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号