首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Extracellular determinants of cardiac contractility in the cold anoxic turtle
Authors:Overgaard Johannes  Wang Tobias  Nielsen Ole Baekgaard  Gesser Hans
Institution:Department of Zoophysiology, Institute of Biological Sciences, University of Aarhus, Aarhus, Denmark. jov@dmu.dk
Abstract:Painted turtles (Chrysemys picta) survive months of anoxic submergence, which is associated with large changes in the extracellular milieu where pH falls by 1, while extracellular K+, Ca++, and adrenaline levels all increase massively. While the effect of each of these changes in the extracellular environment on the heart has been previously characterized in isolation, little is known about their interactions and combined effects. Here we examine the isolated and combined effects of hyperkalemia, acidosis, hypercalcemia, high adrenergic stimulation, and anoxia on twitch force during isometric contractions in isolated ventricular strip preparations from turtles. Experiments were performed on turtles that had been previously acclimated to warm (25 degrees C), cold (5 degrees C), or cold anoxia (submerged in anoxic water at 5 degrees C). The differences between acclimation groups suggest that cold acclimation, but not anoxic acclimation per se, results in a downregulation of processes in the excitation-contraction coupling. Hyperkalemia (10 mmol L(-1) K+) exerted a strong negative inotropic effect and caused irregular contractions; the effect was most pronounced at low temperature (57%-97% reductions in twitch force). Anoxia reduced twitch force at both temperatures (14%-38%), while acidosis reduced force only at 5 degrees C (15%-50%). Adrenergic stimulation (10 micromol L(-1)) increased twitch force by 5%-19%, but increasing extracellular Ca++] from 2 to 6 mmol L(-1) had only small effects. When all treatments were combined with anoxia, twitch force was higher at 5 degrees C than at 25 degrees C, whereas in normoxia twitch force was higher at 25 degrees C. We propose that hyperkalemia may account for a large part of the depressed cardiac contractility during long-term anoxic submergence.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号