首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The effects of temperature acclimation on the photoinhibitory responses of Ulva rotundata Blid.
Authors:Linda A Franklin
Institution:(1) Duke University Marine Laboratory, 28516-9721 Beaufort, NC, USA;(2) Present address: Research School of Biological Sciences, Institute of Advanced Studies, The Australian National University, 2601 Canberra, ACT, Australia
Abstract:The effect of acclimation to 25, 18, or 10° C on the relationship between photoprotection and photodamage was tested in low-light-grown (80 mgrmol · m–2 · s–1) Ulva rotundata Blid. exposed to several higher irradiances at the acclimation temperature. Changes in chlorophyll fluorescence parameters (minimum fluorescence, F0, and the ratio of variable to maximum fluorescence, Fv/Fm, measured after 5 min darkness) were monitored during 5 h transfers to 350, 850, and 1700 mgrmol · m–2 · s–1, and during recovery after 1- or 5-h treatments. At all temperatures, rate of onset and final extent of photoinhibition, measured by a decrease in Fv/Fm, increased with increasing irradiance. At a given photoinhibitory irradiance, rate of onset was most rapid at 10 ° C, but the extent was temperature-independent. Recovery rates from mild light stress were similar at all temperatures, but recovery from the most extreme photoinhibitory treatment lagged 2 h at 10° C. De-epoxidation of xanthophyll-cycle components proceeded faster and to a lower epoxidation status at 25° C, but there was little difference in the pool size among the three growth conditions. Using chloramphenicol to inhibit chloroplast protein synthesis and dithiothreitol to inhibit violaxanthin de-epoxidation, it was shown that at the lowest light treatment given, the extent of photoinhibition could be attributed both to greater amounts of photodamage and to greater zeaxanthin-related photoprotection at 25 than at 10° C. While these two mechanisms for high-light-induced loss of photosynthetic efficiency were operating at 10° C, there was evidence for a relatively greater proportion of zeaxanthin-unrelated photoprotection at the low temperature. This photoprotective mechanism is related to a rapidly reversible increase in F0 and is insentivite to both chloramphenicol and dithiothreitol.Abbreviations and Symbol CAP chloramphenicol - DTT dihiothreitol - F0, Fm, Fv minimum, maximum, and variable fluorescence - PHgr quantum yield This research was conducted in partial fulfillment of the requirements for the Ph. D. degree in the Department of Botany, Duke University. The author wishes to thank E.-M. Aro, W.J. Henley, G. Levavasseur, C.B. Osmond, and J. Ramus for helpful discussions, and C. Lovelock for pigment standards. Funding was provided by Grants-in-Aid of Research from Sigma Xi and the Phycological Society of America, and a Lynde and Harry Bradley Foundation Fellowship to L.A.F., and National Science Foundation grant OCE-8812157 to C.B.O. and J.R.
Keywords:Chlorophyll fluorescence  Photoinhibition  Photoprotection  Temperature  Ulva  Xanthophyll cycle
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号