首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structure/function analysis of an RNA aptamer for hepatitis C virus NS3 protease
Authors:Sekiya Satoru  Nishikawa Fumiko  Fukuda Kotaro  Nishikawa Satoshi
Institution:Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan.
Abstract:RNA aptamers that bind specifically to hepatitis C virus (HCV) NS3 protease domain (DeltaNS3) were identified in previous studies. These aptamers, G9-I, -II, and -III, were isolated using an in vitro selection method and they share a common loop with the sequence 5'-GA(A/U)UGGGAC-3'. The aptamers are potent inhibitors of the NS3 protease in vitro and may have potential as anti-HCV compounds. G9-I has a 3-way stem-loop structure and was selected for further characterization using site-directed mutagenesis. Mutations or deletions in stem-loop II do not interfere with binding or inhibition of DeltaNS3, but mutations or deletions in stem I and stem-loop III destroy the G9-I active conformation and interfere with inhibition of NS3 protease. A 51 nt fragment of 74 nt G9-I was identified (DeltaNEO-III) as is the minimal fragment of G9-I that is an effective inhibitor of the NS3 protease. Tertiary interactions involving functionally important nucleotides were identified in the active structure of G9-I using nucleotide analog interference mapping (NAIM). Strong interferences were focused in the conserved loop involving stem-loop III and stem I. For example, analog-interference caused at A(+8) and C(+24)-G(-36) base pair implied an A-minor motif involving the intramolecular base triple A(+8).C(+24)-G(-36), which is further supported by mutagenesis. These results suggested the interaction of stem I and stem-loop III is essential for the function of G9-I aptamer.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号