首页 | 本学科首页   官方微博 | 高级检索  
     


EFFECTS OF LIGHT ON THE DEOXYRIBONUCLEIC ACID FORMATION AND CELLULAR DIVISION IN CHLORELLA PROTOTHECOIDES
Authors:SOKAWA, YOSHIHIRO   HASE, EKJI
Affiliation:1Institute of Applied Microbiology, University of Tokyo Tokyo
2Tokugawa Institute for Biological Research Tokyo
Abstract:
  1. It has been demonstrated previously that when Chlorella protothecoidesis grown in a medium rich in glucose and poor in nitrogen source(urea), chlorophyll-less cells with markedly degenerated plastids—called "glucose-bleached" cells—are produced eitherin the light or in darkness. When the glucose-bleached cellsare incubated in a medium enriched with the nitrogen sourcebut without added glucose, normal green cells with fully organizedchloroplasts are obtained in the light, and pale green cellswith partially organized chloroplasts in darkness. During theseprocesses of chloroplast development in the glucose-bleachedcells, there occurs, after a certain lag period, an active DNAformation followed by a more or less synchronous cellular division.In the present study the effects of light on the DNA formationand cellular division were investigated in the presence of CMUor under aeration of CO2-free air to exclude the interveninginfluence of photosynthetic process.
  2. It was revealed thatlight severely suppresses the DNA formationand cellular divisionof the glucose-bleached cells while enhancingremarkably theirgreening. The suppression was saturated atthe light intensityof about 1,000 lux. Blue light was mosteffective, being followedby green, yellow and red light inthe order of decreasing effectiveness.
  3. Further experiments unveiled that light exerts two apparentlyopposing effects on the DNA formation depending upon the timeof application during the incubation of algal cells. When thealgal cells were illuminated only during the lag period beforethe active DNA synthesis, there occurred an enhancement of theDNA synthesis occurring during the subsequent dark incubation.When, on the other hand, the cells were transferred to the lightfrom darkness at or after the start of the DNA synthesis, itcaused an almost complete abolition of the subsequent synthesisof DNA in the algal cells. No such effects of light were observedwith RNA and protein (total)
  4. These findings were discussedin relation to the process ofchlorophyll formation occurringconcurrently in the algal cells.
(Received August 10, 1967; )
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号