首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Conversion of the lycopene monocyclase of <Emphasis Type="Italic">Myxococcus xanthus</Emphasis> into a bicyclase
Authors:Antonio A Iniesta  María Cervantes  Francisco J Murillo
Institution:Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, Murcia, Spain. ainiesta@stanford.edu
Abstract:Depending on the cyclized hydrocarbon backbone ends, carotenoids can be acyclic, monocyclic, or bicyclic. Lycopene cyclases are the enzymes responsible for catalyzing the formation of cyclic carotenoids from acyclic lycopene. Myxococcus xanthus is a bacterium that accumulates monocyclic carotenoids such as a glycoside ester of myxobacton. We show here that this bacterium possesses a cyclase belonging to the group of the heterodimeric cyclases CrtYc and CrtYd. These two individual proteins are encoded by crtYc and crtYd, which are located in the carotenogenic carA operon of the carB-carA gene cluster, and the presence of both is essential for the cyclization of lycopene. CrtYc and CrtYd from M. xanthus form a heterodimeric cyclase with beta-monocyclic activity, which converts lycopene into monocyclic gamma-carotene, but not into bicyclic beta-carotene like most beta-cyclases. This is an unusual case where two different proteins constitute a lycopene cyclase enzyme with monocyclic activity. We were able to convert this lycopene monocyclase into a lycopene bicyclase enzyme producing beta-carotene, by fusing both proteins with an extra transmembrane domain. The chimeric protein appears to allow a proper membranal disposition of both CrtYc and CrtYd, to perform two cyclization reactions, while a hybrid without the extra transmembrane helix performs only one cyclization.
Keywords:Carotenes  Cyclization  Beta-carotene  Gamma-carotene  Heterodimeric
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号