首页 | 本学科首页   官方微博 | 高级检索  
     


Bmp signaling is required for development of primary lens fiber cells
Authors:Faber Sonya C  Robinson Michael L  Makarenkova Helen P  Lang Richard A
Affiliation:Division of Developmental Biology and Department of Ophthalmology, Children's Hospital Research Foundation, 3333 Burnet Avenue Cincinnati, OH 45229, USA.
Abstract:We have investigated the role of Bmp signaling in development of the mouse lens using three experimental strategies. First, we have shown that the Bmp ligand inhibitor noggin can suppress the differentiation of primary lens fiber cells in explant culture. Second, we have expressed a dominant-negative form of the type 1 Bmp family receptor Alk6 (Bmpr1b -- Mouse Genome Informatics) in the lens in transgenic mice and shown that an inhibition of primary fiber cell differentiation can be detected at E13.5. Interestingly, the observed inhibition of primary fiber cell development was asymmetrical and appeared only on the nasal side of the lens in the ventral half. Expression of the inhibitory form of Alk6 was driven either by the alpha A-cystallin promoter or the ectoderm enhancer from the Pax6 gene in two different transgenes. These expression units drive transgene expression in distinct patterns that overlap in the equatorial cells of the lens vesicle at E12.5. Despite the distinctions between the transgenes, they caused primary fiber cell differentiation defects that were essentially identical, which implied that the equatorial lens vesicle cells were responding to Bmp signals in permitting primary fiber cells to develop. Importantly, E12.5 equatorial lens vesicle cells showed cell-surface immunoreactivity for bone-morphogenetic protein receptor type 2 and nuclear immunoreactivity for the active, phosphorylated form of the Bmp responsive Smads. This indicated that these cells had the machinery for Bmp signaling and were responding to Bmp signals. We conclude that Bmp signaling is required for primary lens fiber cell differentiation and, given the asymmetry of the differentiation inhibition, that distinct differentiation stimuli may be active in different quadrants of the eye.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号