首页 | 本学科首页   官方微博 | 高级检索  
     


Tissue-specificity of heparan sulfate biosynthetic machinery in cancer
Authors:Anastasia V Suhovskih  Natalya V Domanitskaya  Alexandra Y Tsidulko  Tatiana Y Prudnikova  Vladimir I Kashuba  Elvira V Grigorieva
Affiliation:1Institute of Molecular Biology and Biophysics SD RAMS; Novosibirsk, Russia;2Novosibirsk State University; Novosibirsk, Russia;3MTC; Karolinska Institute; Stockholm, Sweden
Abstract:Heparan sulfate (HS) proteoglycans are key components of cell microenvironment and fine structure of their polysaccharide HS chains plays an important role in cell-cell interactions, adhesion, migration and signaling. It is formed on non-template basis, so, structure and functional activity of HS biosynthetic machinery is crucial for correct HS biosynthesis and post-synthetic modification. To reveal cancer-related changes in transcriptional pattern of HS biosynthetic system, the expression of HS metabolism-involved genes (EXT1/2, NDST1/2, GLCE, 3OST1/HS3ST1, SULF1/2, HPSE) in human normal (fibroblasts, PNT2) and cancer (MCF7, LNCaP, PC3, DU145, H157, H647, A549, U2020, U87, HT116, KRC/Y) cell lines and breast, prostate, colon tumors was studied. Real-time RT-PCR and Western-blot analyses revealed specific transcriptional patterns and expression levels of HS biosynthetic system both in different cell lines in vitro and cancers in vivo. Balance between transcriptional activities of elongation- and post-synthetic modification- involved genes was suggested as most informative parameter for HS biosynthetic machinery characterization. Normal human fibroblasts showed elongation-oriented HS biosynthesis, while PNT2 prostate epithelial cells had modification-oriented one. However, cancer epithelial cells demonstrated common tendency to acquire fibroblast-like elongation-oriented mode of HS biosynthetic system. Surprisingly, aggressive metastatic cancer cells (U2020, DU145, KRC/Y) retained modification-oriented HS biosynthesis similar to normal PNT2 cells, possibly enabling the cells to keep like-to-normal cell surface glycosylation pattern to escape antimetastatic control. The obtained results show the cell type-specific changes of HS-biosynthetic machinery in cancer cells in vitro and tissue-specific changes in different cancers in vivo, supporting a close involvement of HS biosynthetic system in carcinogenesis.
Keywords:biosynthesis   breast cancer   colon cancer   expression pattern   extracellular matrix   heparan sulfate   proteoglycan   prostate cancer   tissue-specificity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号