首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Monarch butterfly spatially discrete advection model
Authors:Yakubu Abdul-Aziz  Sáenz Roberto  Stein Julie  Jones Laura E
Institution:Department of Mathematics, Howard University, Washington, DC 20059, USA. ayakubu@fac.howard.edu
Abstract:We study the population cycles of the Monarch butterfly using one of the simplest systems incorporating both migration and local dynamics. The annual migration of the Monarch involves four generations. Members of Generations 1-3 (occasionally 4) migrate from the over-wintering site in Central Mexico to breeding grounds that extend as far north as the Northern United States and Southern Canada. A portion of the Generation 3 and all members of the Generation 4 butterflies begin their return to the over-wintering grounds in August through October where they enter reproductive diapause for several months. We developed a simple discrete-time island chain model in which different fecundity functions are used to model the reproductive strategies of each generation. The fecundity functions are selected from broad classes of functions that capture the effects of either contest or scramble intraspecific competition in the Monarch population. The objectives of our research are multiple and include the study of the generationally dependent intraspecific competition and its effect on the pool size of migrants as well as the persistence of the overall butterfly populations. The stage structure used in modeling the Monarch butterfly dynamics and their generationally dependent reproductive strategies naturally support fluctuating patterns and multiple attractors. The implications of these fluctuations and attractors on the long-term survival of the Monarch butterfly population are explored.
Keywords:Compensatory dynamics  Contest competition  Fecundity function  Metapopulation  Migration  Monarch butterfly  Overcompensatory dynamics  Scramble competition
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号