首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The role of an extra fragment of cytochrome b (residues 309-326) in the cytochrome bc1 complex from Rhodobacter sphaeroides
Authors:Gong Xing  Yu Linda  Yu Chang-An
Institution:Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma 74078, USA.
Abstract:In bacterial cytochrome b of the cytochrome bc(1) complex, there is an extra fragment located between the amphipathic helix ef and the transmembrane helix F compared to the mitochondrial counterparts. In this work, mutants at various positions of this extra fragment were generated in Rhodobacter sphaeroides in an effort to investigate its specific role in the bacterial bc(1) complex. The total deletion cytb-Delta(309-326)] and alanine substitution cytb-(309-326)A] mutant complexes have about 20% of the bc(1) activity found in the wild-type complex. Mutant complexes of cytb-(309-311)A, cytb-(312-314)A, cytb-(315-317)A, cytb-(318-321)A, cytb-(322-323)A, cytb-(324-326)A, cytb-(F323A), and cytb-(S322A) have respectively 87%, 85%, 89%, 100%, 32%, 90%, 100%, and 32% of the bc(1) activity, indicating that the S322 of cytochrome b is important. EPR spectral analysis reveals that the 2Fe-2S] cluster in the cytb-(S322A) mutant complex has a broadened and shifted g(x)() signal (g = 1.76). The rate of superoxide anion (O(2)(*)(-)) generation is 4 times higher in the cytb-(S322A) mutant complex than in the wild-type or mutant complexes of S322T, S322Y, or S322C. These results support the idea that alanine substitution at S322 of cytochrome b causes conformational changes at the Q(o) site by weakening the binding between cytochrome b and ISP through hydrogen bonding provided by the hydroxyl group of this residue. This change facilitates electron leakage from the Q(o) site for reaction with molecular oxygen to form superoxide anion, thus decreasing bc(1) activity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号