首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Base hydrolysis of phosphodiester bonds in pneumococcal polysaccharides
Authors:Pujar Narahari S  Huang Ngan Fong  Daniels Christopher L  Dieter Lance  Gayton Marshall G  Lee Ann L
Institution:WP17-301, P. O. Box 4, Merck Research Laboratories, Merck & Co., West Point, PA 19486, USA. hari_pujar@merck.com
Abstract:A comprehensive study of the base hydrolysis of all phosphodiester bond-containing capsular polysaccharides of the 23-valent pneumococcal vaccine is described here. Capsular polysaccharides from serotypes 6B, 10A, 17F, 19A, 19F, and 20 contain a phosphodiester bond that connects the repeating units in these polysaccharides (also referred to as backbone phosphodiester bonds), and polysaccharides from serotypes 11A, 15B, 18C, and 23F contain a phosphodiester bond that links a side chain to their repeating units. Molecular weight measurements of the polysaccharides, using high performance size exclusion chromatography with tandem multiangle laser light scattering and refractive index detection, was used to evaluate the kinetics of hydrolysis. The measurement of molecular weight provides a high degree of sensitivity in the case of small extents of reaction, thus allowing reliable measurements of the kinetics over short times. Pseudo-first-order rate constants for these polysaccharides were estimated using a simple model that accounts for the polydispersity of the starting sample. It was found that the relative order of backbone phosphodiester bond instability due to base hydrolysis was 19A > 10A > 19F > 6B > 17F, 20. Degradation of side-chain phosphodiester bonds was not observed, although the high degree of sensitivity in measurements is lost in this case, due to the low contribution of the side chains to the total polysaccharide molecular weight. In comparison with literature data on pneumococcal polysaccharide 6A, 19A was found to be the more labile, and hence appears to be the most labile pneumococcal polysaccharide studied to date. The rate of hydrolysis increased at higher pH and in the presence of divalent cation, but the extent was lower than expected based on similar data on RNA. Finally, the differences in the phosphodiester bond stabilities were analyzed by considering stereochemical factors in these polysaccharides. These results also provide a framework for evaluation of molecular integrity of phosphodiester-bond-containing polysaccharides in different solution conditions.
Keywords:base hydrolysis  phosphodiester bond  pneumococcal polysaccharide
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号