首页 | 本学科首页   官方微博 | 高级检索  
     


Novel bioinspired control approaches to increase the stiffness variability in multi-muscle driven joints
Authors:Annunziata Salvatore  Paskarbeit Jan  Schneider Axel
Affiliation:Junior Research Group Mechatronics of Biomimetic Actuators, Faculty of Technology, University of Bielefeld, PO Box 100131, 33501 Bielefeld, Germany. salvatore.annunziata@uni-bielefeld.de
Abstract:Antagonistic muscle pairs pulling on a joint are in general able to modulate stiffness through co-activation. Closer analysis of the stiffness, however, shows that, depending on the muscle and joint parameters, domains might occur in joint angle space for which stiffness variation is limited (low stiffness variability) or even impossible (stiffness nodes). As a consequence, stiffness control utilizing pure co-activation might fail. This work presents novel strategies for simultaneous control of torque and stiffness in a hinge joint actuated by two antagonistic muscle pairs. One strategy handles stiffness nodes by shifting them away from the current joint position and thus regaining stiffness controllability. To prevent domains of low stiffness variation, an optimal muscle configuration is sought and finally defined which allows for a maximal stiffness variation across a wide joint angle range. Based on this optimal configuration, four additional control strategies are proposed and tested which deliver stiffnesses and torques comparable to those obtained in the optimal case. The strategies combine torque control and stiffness control by co-activation with novel ideas like activation overflow and an inverse model approach. All strategies are tested in simulation and the results are compared with those of the optimal setup.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号