首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Heat stress-induced BBX18 negatively regulates the thermotolerance in Arabidopsis
Authors:Qiming Wang  Xiaoju Tu  Jihong Zhang  Xinbo Chen  Liqun Rao
Institution:1. State Key Laboratory Breeding Base for Crop Germplasm Innovation and Utilization, College of Biosciences and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
2. College of Orient sciences and technology, Hunan Agricultural University, Changsha, 410128, China
3. Department of Biology Engineering, Xiangtan University, Xiangtan, 411105, China
Abstract:There is increasing evidence for considerable interlinking between the responses to heat stress (HS) and light signaling. In the present work, we provide molecular evidence that BBX18, a negative regulator in photomorphogenesis belonging to the B-box zinc finger protein family in Arabidopsis thaliana, is involved in the regulation of thermotolerance. Using quantitative RT-PCR, GUS staining and immunoblot analysis, our results indicate that the expression of BBX18 was induced by HS. BBX18-RNAi and 35S::BBX18 transgenic Arabidopsis plants were obtained for functional analysis of BBX18. Under-expression of BBX18 displayed increased both basal and acquired thermotolerance in the transgenic plants, while over-expression of BBX18 reduced tolerance to HS in transgenic lines. Moreover, when wild-type, BBX18-RNAi and 35S::BBX18 transgenic plants were treated with HS, HR-related digalactosyldiacylglycerol synthase 1 (DGD1) was down-regulated by BBX18 in both normal and heat shock conditions. Besides, the expression levels of Hsp70, Hsp101 and APX2 were increased in BBX18-RNAi transgenic plants, but lower in 35S::BBX18 transgenic plants. However, the expression of HsfA2 was lower in BBX18-RNAi transgenic plants and higher in the 35S::BBX18 after high-temperature treatment. These results suggesting that, by modulated expression of a set of HS-responsive genes, BBX18 weakened tolerance to HS in Arabidopsis. So our data indicate that BBX18 plays a negative role in thermotolerance.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号