首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Kaposi's sarcoma-associated herpesvirus K7 protein targets a ubiquitin-like/ubiquitin-associated domain-containing protein to promote protein degradation
Authors:Feng Pinghui  Scott Christopher W  Cho Nam-Hyuk  Nakamura Hiroyuki  Chung Young-Hwa  Monteiro Mervyn J  Jung Jae U
Institution:Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772, USA.
Abstract:Pathogens exploit host machinery to establish an environment that favors their propagation. Because of their pivotal roles in cellular physiology, protein degradation pathways are common targets for viral proteins. Protein-linking integrin-associated protein and cytoskeleton 1 (PLIC1), also called ubiquilin, contains an amino-terminal ubiquitin-like (UBL) domain and a carboxy-terminal ubiquitin-associated (UBA) domain. PLIC1 is proposed to function as a regulator of the ubiquitination complex and proteasome machinery. Kaposi's sarcoma-associated herpesvirus (KSHV) contains a small membrane protein, K7, that protects cells from apoptosis induced by various stimuli. We report here that cellular PLIC1 is a K7-interacting protein and that the central hydrophobic region of K7 and the carboxy-terminal UBA domain of PLIC1 are responsible for their interaction. Cellular PLIC1 formed a dimer and bound efficiently to polyubiquitinated proteins through its carboxy-terminal UBA domain, and this activity correlated with its ability to stabilize cellular I kappa B protein. In contrast, K7 interaction prevented PLIC1 from forming a dimer and binding to polyubiquitinated proteins, leading to the rapid degradation of I kappa B. Furthermore, K7 expression promoted efficient degradation of the p53 tumor suppressor, resulting in inhibition of p53-mediated apoptosis. These results indicate that KSHV K7 targets a regulator of the ubiquitin- and proteasome-mediated degradation machinery to deregulate cellular protein turnover, which potentially provides a favorable environment for viral reproduction.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号