首页 | 本学科首页   官方微博 | 高级检索  
     

生物信息学分析方法I: 全基因组关联分析概述
引用本文:赵宇慧,李秀秀,陈倬,鲁宏伟,刘羽诚,张志方,梁承志. 生物信息学分析方法I: 全基因组关联分析概述[J]. 植物学报, 2020, 55(6): 715-732. DOI: 10.11983/CBB20091
作者姓名:赵宇慧  李秀秀  陈倬  鲁宏伟  刘羽诚  张志方  梁承志
作者单位:1中国科学院遗传与发育生物学研究所, 北京 1001012中国科学院大学, 北京 100049
基金项目:中国科学院战略性先导科技专项(XDA24040201)
摘    要:全基因组关联分析(GWAS)是动植物复杂性状相关基因定位的常用手段。高通量基因分型技术的应用极大地推动了GWAS的发展。在植物中, 利用GWAS不仅能够以较高的分辨率在全基因组水平鉴定出各种自然群体特定性状相关的基因或区间, 而且可揭示表型变异的遗传架构全景图。目前, 人们利用GWAS分析方法已在拟南芥(Arabidopsis thaliana)、水稻(Oryza sativa)、小麦(Triticum aestivum)、玉米(Zea mays)和大豆(Glycine max)等模式植物和重要农作物品系中发掘出与各种性状显著相关的数量性状座位(QTL)及其候选基因位点, 阐明了这些性状的遗传基础, 并为揭示这些性状背后的分子机理提供候选基因, 也为作物高产优质品种的选育提供了理论依据。该文对GWAS的方法、影响因素及数据分析流程进行了详细描述, 以期为相关研究提供参考。

关 键 词:混合线性模型  全基因组关联分析(GWAS)  生物信息学  
收稿时间:2020-05-20

An Overview of Genome-wide Association Studies in Plants
Yuhui Zhao,Xiuxiu Li,Zhuo Chen,Hongwei Lu,Yucheng Liu,Zhifang Zhang,Chengzhi Liang. An Overview of Genome-wide Association Studies in Plants[J]. Bulletin of Botany, 2020, 55(6): 715-732. DOI: 10.11983/CBB20091
Authors:Yuhui Zhao  Xiuxiu Li  Zhuo Chen  Hongwei Lu  Yucheng Liu  Zhifang Zhang  Chengzhi Liang
Affiliation:1Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China2University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Genome-wide association study (GWAS) is a general approach for unraveling genetic variations associated with complex traits in both animals and plants. The development of high-throughput genotyping has greatly boosted the development and application of GWAS. GWAS is not only used to identify genes/loci contributing to specific traits from diversenatural populations with high-resolution genome-wide markers, it also systematically reveals the genetic architecture underlying complex traits. During recent years, GWAS has successfully detected a large number of QTLs and candidate genes associated with various traits in plants including Arabidopsis, rice, wheat, soybean and maize. All these findings provided candidate genes controlling the traits and theoretical basis for breeding of high-yield and high-quality varieties. Here we review the methods, the factors affecting the power, and a data analysis pipeline of GWAS to provide reference for relevant research.
Keywords:mixed linear model  genome-wide association study (GWAS)  bioinformatics  
点击此处可从《植物学报》浏览原始摘要信息
点击此处可从《植物学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号