首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Characterization of Zinc Uptake, Binding, and Translocation in Intact Seedlings of Bread and Durum Wheat Cultivars
Authors:Jonathan J Hart  Wendell A Norvell  Ross M Welch  Lori A Sullivan  and Leon V Kochian
Institution:Plant, Soil, and Nutrition Laboratory, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, New York 14853
Abstract:Durum wheat (Triticum turgidum L. var durum) cultivars exhibit lower Zn efficiency than comparable bread wheat (Triticum aestivum L.) cultivars. To understand the physiological mechanism(s) that confers Zn efficiency, this study used 65Zn to investigate ionic Zn2+ root uptake, binding, and translocation to shoots in seedlings of bread and durum wheat cultivars. Time-dependent Zn2+ accumulation during 90 min was greater in roots of the bread wheat cultivar. Zn2+ cell wall binding was not different in the two cultivars. In each cultivar, concentration-dependent Zn2+ influx was characterized by a smooth, saturating curve, suggesting a carrier-mediated uptake system. At very low solution Zn2+ activities, Zn2+ uptake rates were higher in the bread wheat cultivar. As a result, the Michaelis constant for Zn2+ uptake was lower in the bread wheat cultivar (2.3 μm) than in the durum wheat cultivar (3.9 μm). Low temperature decreased the rate of Zn2+ influx, suggesting that metabolism plays a role in Zn2+ uptake. Ca inhibited Zn2+ uptake equally in both cultivars. Translocation of Zn to shoots was greater in the bread wheat cultivar, reflecting the higher root uptake rates. The study suggests that lower root Zn2+ uptake rates may contribute to reduced Zn efficiency in durum wheat varieties under Zn-limiting conditions.Soils that contain insufficient levels of the essential plant micronutrient Zn are common throughout the world. As a result, Zn deficiency is a widespread problem in crop plants, especially cereals (Graham et al., 1992). The importance of plant foods as sources of Zn, particularly in the marginal diets of developing countries, is well established (Welch, 1993). The development of crop plants that are efficient Zn accumulators is therefore a potentially important endeavor. In addition to its effects on nutrition, Zn deficiency in crops is relevant to other areas of human health. Another consequence of Zn-deficient soils is the tendency for plants grown in such soils to accumulate heavy metals. For example, in the Great Plains region of North America, where soil Zn levels are low and naturally occurring Cd is present, durum wheat (Triticum turgidum L. var durum) grains accumulate Cd to relatively high concentrations (Wolnik et al., 1983). The presence of Cd in food represents a potential human health hazard and, in response, international trade standards have been proposed to limit the levels of Cd in exported grain (Codex Alimentarius Commission, 1993). Thus, there is a need to understand the physiological processes that control acquisition of Zn from soil solution by roots and mobilization of Zn within plants.It has been demonstrated in recent years that crop plants vary in their ability to take up Zn, particularly when its availability to roots is limited. Zn efficiency, defined as the ability of a plant to grow and yield well in Zn-deficient soils, varies among wheat cultivars (Graham and Rengel, 1993). In field trials, durum wheat cultivars have been shown to be consistently less Zn efficient than bread wheat (Triticum aestivum L.) cultivars (Graham et al., 1992). Similarly, durum wheat varieties were reported to be less Zn efficient than bread wheat varieties when grown in chelate-buffered hydroponic nutrient culture (Rengel and Graham, 1995a).The physiological mechanism(s) that confers Zn efficiency has not been identified. Processes that could influence the ability of a plant to tolerate limited amounts of available Zn include higher root uptake, more efficient utilization of Zn, and enhanced Zn translocation within the plant. Cakmak et al. (1994) showed that a Zn-inefficient durum wheat cultivar exhibited Zn-deficiency symptoms earlier and more intensely than a Zn-efficient bread wheat cultivar even though the Zn tissue concentrations were similar in both lines, suggesting differential utilization of Zn in the two cultivars. Rates of Zn translocation to shoots were shown to vary among sorghum cultivars, although correlations with Zn efficiency were not established (Ramani and Kannan, 1985). Root uptake kinetics have been reported to vary between rice cultivars having different Zn requirements, with high-Zn-requiring cultivars exhibiting consistently higher root uptake rates (Bowen, 1986). In contrast, a correlation between Zn efficiency and rates of root Zn uptake in bread and durum wheat cultivars could not be demonstrated (Rengel and Graham, 1995b).In grasses Zn influx into the root symplasm has been hypothesized to occur as the free Zn2+ ion (Halvorson and Lindsay, 1977), as well as in the form of Zn complexes with nonprotein amino acids known as phytosiderophores (Tagaki et al., 1984) or phytometallophores (Welch, 1993). Concentration-dependent uptake of free Zn2+ ions has been shown to be saturable in several species, including maize (Mullins and Sommers, 1986), barley (Veltrup, 1978), and wheat (Chaudhry and Loneragan, 1972), suggesting that ionic uptake in grasses occurs via a carrier-mediated system. However, several of these studies have been criticized on the basis that excessively high (and physiologically unrealistic) Zn2+ concentrations were used (Kochian, 1993).This study was undertaken to examine unidirectional Zn2+ influx and translocation to shoots in Zn-efficient bread wheat lines and Zn-inefficient durum wheat lines. Experiments were performed in the absence of added phytometallophores and results are presumed to represent influx of ionic Zn2+. Zn activities in the nanomolar range were used to more closely mimic free Zn2+ levels occurring naturally in soil solution. The results presented here indicate that a Zn-efficient bread wheat cultivar maintained higher rates of Zn uptake than a Zn-inefficient durum wheat cultivar, particularly at low (and physiologically relevant) solution Zn2+ activities.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号