首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Characterization and reconstitution of a 4Fe-4S adenylyl sulfate/phosphoadenylyl sulfate reductase from Bacillus subtilis
Authors:Berndt Carsten  Lillig Christopher H  Wollenberg Markus  Bill Eckhard  Mansilla María C  de Mendoza Diego  Seidler Andreas  Schwenn Jens D
Institution:Biochemie der Pflanzen, Fakult?t für Biologie, Ruhr Universit?t, Bochum 44780, Germany.
Abstract:CysH1 from Bacillus subtilis encodes a 3'-phospho/adenosine-phosphosulfate-sulfonucleotide reductase (SNR) of 27 kDa. Recombinant B. subtilis SNR is a homodimer, which is bispecific and reduces adenylylsulfate (APS) and 3'-phosphoadenylylsulfate (PAPS) alike with thioredoxin 1 or with glutaredoxin 1 as reductants. The enzyme has a higher affinity for PAPS (K(m)PAPS 6.4 microm Trx-saturating, 10.7 microm Grx-saturating) than for APS (K(m) APS 28.7 microm Trx-saturating, 105 microm Grx-saturating) at a V(max) ranging from 280 to 780 nmol sulfite mg(-1) min(-1). The catalytic efficiency with PAPS as substrate is higher by a factor of 10 (K(cat)/K(m) 2.7 x 10(4)-3.6 x 10(4) liter mol(-1) s(-1). B. subtilis SNR contains one 4Fe-4S cluster per polypeptide chain. SNR activity and color were lost rapidly upon exposure to air or upon dilution. M?ssbauer and absorption spectroscopy revealed that the enzyme contained a 4Fe-4S cluster when isolated, but degradation of the 4Fe-4S cluster produced an inactive intermediate with spectral properties of a 2Fe-2S cluster. Activity and spectral properties of the 4Fe-4S cluster were restored by preincubation of SNR with the iron-sulfur cluster-assembling proteins IscA1 and IscS. Reconstitution of the 4Fe-4S cluster of SNR did not affect the reductive capacity for PAPS or APS. The interconversion of the clusters is thought to serve as oxygen-sensitive switch that suppresses SO(3) formation under aerobiosis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号