首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A mutation in the consensus ATP-binding sequence of the RecD subunit reduces the processivity of the RecBCD enzyme from Escherichia coli.
Authors:F Korangy  D A Julin
Institution:Department of Chemistry and Biochemistry, University of Maryland, College Park 20742.
Abstract:We have constructed a mutant form of the RecBCD enzyme from Escherichia coli with a lysine to glutamine change in the consensus ATP-binding sequence in the RecD subunit (Korangy, F., and Julin, D.A. (1992a, 1992b) J. Biol. Chem., 1727-1732; 1733-1740). We compare here the kinetics of double-stranded DNA-dependent ATP hydrolysis by the mutant (RecBCD-K177Q) and wild-type enzymes. We included heparin to trap enzyme not bound to DNA, or the single-stranded DNA-binding (SSB) protein from Escherichia coli to prevent the enzyme from binding to single-stranded DNA products and partially single-stranded reaction intermediates. The ATP hydrolysis kinetics in either case show a rapid burst phase followed by a slower second phase. The wild-type enzyme hydrolyzes an amount of ATP about equal to the DNA nucleotide concentration in the rapid phase. The amount of ATP hydrolyzed by the RecBCD-K177Q enzyme in the burst is about 8-10-fold lower than the wild-type, in the presence of either heparin or SSB. The burst magnitude of the wild-type enzyme with heparin is proportional to the size of the DNA from about 1,420 to 22,400 base pairs whereas that of the mutant is independent of the DNA size. The wild-type enzyme completely degrades a 6,250-base pair DNA substrate with no partially degraded molecules visible on agarose gels. RecBCD-K177Q enzyme reaction mixtures in the presence of SSB protein contain a heterogeneous mixture of partially degraded molecules of 2,000-5,000 base pairs. These results indicate that the RecBCD-K177Q enzyme is less processive than the wild-type enzyme.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号