Abstract: | Cartilage proteoglycan monomers associate with hyaluronic acid to form proteoglycan aggregates. Link protein, a glycoprotein interacting with both hyaluronic acid and proteoglycan, serves to stabilize the aggregate structure. The primary structure of the link protein has been determined with a view to defining its interaction with both hyaluronic acid and proteoglycan. Thus, the link protein has been digested with staphylococcal V8 protease, trypsin, and chymotrypsin and the resulting peptides characterized by amino acid composition and sequence. We have determined that the link protein is a single peptide with 339 amino acid residues. The protein core has a molecular weight of 38,564. There is one N-linked oligosaccharide at residue 41 with a molecular weight of approximately 2,500. There are five disulfide bonds which define three loops within the amino acid sequence. The loop nearest to the NH2-terminal contains 78 amino acids and is followed by a section of 42 amino acids between it and the second loop. The second and third loops display considerable homology with each other; they consist of 71 and 70 amino acids, respectively, each contain two disulfide bonds, and both loops possess, approximately centrally, an epitope for the species nonspecific anti-link protein monoclonal antibody, 8A4. These loops are separated by a short section of 27 amino acids. We speculate that these loops are functionally important in the interaction of link protein with hyaluronic acid, as they appear to be the most conserved regions of link protein between species. |