首页 | 本学科首页   官方微博 | 高级检索  
     


Agonism and Antagonism at the Insulin Receptor
Authors:Louise Knudsen  Bo Falck Hansen  Pia Jensen  Thomas ?skov Pedersen  Kirsten Vestergaard  Lauge Sch?ffer  Blagoy Blagoev  Martin B. Oleksiewicz  Vladislav V. Kiselyov  Pierre De Meyts
Affiliation:1. Receptor Systems Biology Laboratory, Hagedorn Research Institute, Gentofte, Denmark.; 2. Department of Insulin and Incretin Biology, Hagedorn Research Institute, Gentofte, Denmark.; 3. Insulin Biology, Novo Nordisk A/S, Måløv, Denmark.; 4. Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark.; 5. Arsanis Biosciences, Vienna, Austria.; University of Cambridge, United Kingdom,
Abstract:Insulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR) binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs). In the case of the IR, no natural ligand or insulin analogue has been shown to exhibit antagonistic properties, with the exception of a crosslinked insulin dimer (B29-B’29). However, synthetic monomeric or dimeric peptides targeting sites 1 or 2 of the IR were shown to be either agonists or antagonists. We found here that the S961 peptide, previously described to be an IR antagonist, exhibited partial agonistic effects in the 1–10 nM range, showing altogether a bell-shaped dose-response curve. Intriguingly, the agonistic effects of S961 were seen only on mitogenic endpoints (3H-thymidine incorporation), and not on metabolic endpoints (14C-glucose incorporation in adipocytes and muscle cells). The agonistic effects of S961 were observed in 3 independent cell lines, with complete concordance between mitogenicity (3H-thymidine incorporation) and phosphorylation of the IR and Akt. Together with the B29-B’29 crosslinked dimer, S961 is a rare example of a mixed agonist/antagonist for the human IR. A plausible mechanistic explanation based on the bivalent crosslinking model of IR activation is proposed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号