首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Hippocampal Insulin Microinjection and In vivo Microdialysis During Spatial Memory Testing
Authors:Ewan C McNay  Leslie A Sandusky  Jiah Pearson-Leary
Institution:Behavioral Neuroscience, University at Albany
Abstract:Glucose metabolism is a useful marker for local neural activity, forming the basis of methods such as 2-deoxyglucose and functional magnetic resonance imaging. However, use of such methods in animal models requires anesthesia and hence both alters the brain state and prevents behavioral measures. An alternative method is the use of in vivo microdialysis to take continuous measurement of brain extracellular fluid concentrations of glucose, lactate, and related metabolites in awake, unrestrained animals. This technique is especially useful when combined with tasks designed to rely on specific brain regions and/or acute pharmacological manipulation; for example, hippocampal measurements during a spatial working memory task (spontaneous alternation) show a dip in extracellular glucose and rise in lactate that are suggestive of enhanced glycolysis1-3,4-5, and intrahippocampal insulin administration both improves memory and increases hippocampal glycolysis6. Substances such as insulin can be delivered to the hippocampus via the same microdialysis probe used to measure metabolites. The use of spontaneous alternation as a measure of hippocampal function is designed to avoid any confound from stressful motivators (e.g. footshock), restraint, or rewards (e.g. food), all of which can alter both task performance and metabolism; this task also provides a measure of motor activity that permits control for nonspecific effects of treatment. Combined, these methods permit direct measurement of the neurochemical and metabolic variables regulating behavior.
Keywords:Neuroscience  Issue 71  Medicine  Neurobiology  Anatomy  Physiology  Psychology  rodents  microdialysis  microinjection  brain  surgery  anesthesia  memory  behavior  insulin  animal model
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号