首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Adhesion Stabilizes Robust Lipid Heterogeneity in Supercritical Membranes at Physiological Temperature
Authors:Jiang Zhao  Jing Wu  Sarah?L Veatch
Institution:Department of Biophysics, University of Michigan, Ann Arbor, Michigan
Abstract:Regions of contact between cells are frequently enriched in or depleted of certain protein or lipid species. Here, we explore a possible physical basis that could contribute to this membrane heterogeneity using a model system of a giant vesicle tethered to a planar supported bilayer. Vesicles contain coexisting liquid-ordered (Lo) and liquid-disordered (Ld) phases at low temperatures and are tethered using trace quantities of adhesion molecules that preferentially partition into one liquid phase. We find that the Ld marker DiI-C12 is enriched or depleted in the adhered region when adhesion molecules partition into Ld or Lo phases, respectively. Remarkably, adhesion stabilizes an extended zone enriched or depleted of DiI-C12 even at temperatures >15°C above the miscibility phase transition when membranes have compositions that are in close proximity to a critical point. A stable adhesion zone is also observed in plasma membrane vesicles isolated from living RBL-2H3 cells, and probe partitioning at 37°C is diminished in vesicles isolated from cells with altered cholesterol levels. Probe partitioning is in good quantitative agreement with predictions of the two-dimensional Ising model with a weak applied field for both types of model membranes. These studies experimentally demonstrate that large and stable domain structure can be mediated by lipids in single-phase membranes with supercritical fluctuations.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号