首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Potential Hydrodynamic Cytoplasmic Transfer between Mammalian Cells: Cell-Projection Pumping
Institution:1. The Cellular and Molecular Pathology Research Unit, Oral Pathology and Oral Medicine, School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Westmead Hospital, Westmead, Australia;2. Cell Biology, The Memorial Sloan Kettering Cancer Center, New York, New York;3. Molecular Cytology, The Memorial Sloan Kettering Cancer Center, New York, New York;4. Sydney Medical School, Faculty of Medicine and Health, and Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, Australia
Abstract:We earlier reported cytoplasmic fluorescence exchange between cultured human fibroblasts (Fibs) and malignant cells (MCs). Others report similar transfer via either tunneling nanotubes (TNTs) or shed membrane vesicles, and this changes the phenotype of recipient cells. Our time-lapse microscopy showed most exchange was from Fibs into MCs, with less in the reverse direction. Although TNTs were seen, we were surprised transfer was not via TNTs but was instead via fine and often branching cell projections that defied direct visual resolution because of their size and rapid movement. Their structure was revealed nonetheless by their organellar cargo and the grooves they formed indenting MCs, which was consistent with holotomography. Discrete, rapid, and highly localized transfer events evidenced against a role for shed vesicles. Transfer coincided with rapid retraction of the cell projections, suggesting a hydrodynamic mechanism. Increased hydrodynamic pressure in retracting cell projections normally returns cytoplasm to the cell body. We hypothesize “cell-projection pumping” (CPP), in which cytoplasm in retracting cell projections partially equilibrates into adjacent recipient cells via microfusions that form temporary intercellular cytoplasmic continuities. We tested plausibility for CPP by combined mathematical modeling, comparison of predictions from the model with experimental results, and then computer simulations based on experimental data. The mathematical model predicted preferential CPP into cells with lower cell stiffness, expected from equilibration of pressure toward least resistance. Predictions from the model were satisfied when Fibs were cocultured with MCs and fluorescence exchange was related to cell stiffness by atomic force microscopy. When transfer into 5000 simulated recipient MCs or Fibs was studied in computer simulations, inputting experimental cell stiffness and donor cell fluorescence values generated transfers to simulated recipient cells similar to those seen by experiment. We propose CPP as a potentially novel mechanism in mammalian intercellular cytoplasmic transfer and communication.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号