首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Richness and Composition of Niche-Assembled Viral Pathogen Communities
Authors:Eric W Seabloom  Elizabeth T Borer  Christelle Lacroix  Charles E Mitchell  Alison G Power
Institution:1. Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, United States of America.; 2. Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America.; 3. Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, United States of America.; Centro de Investigación y de Estudios Avanzados, Mexico,
Abstract:The pathogen and parasite community that inhabits every free-living organism can control host vital rates including lifespan and reproductive output. To date, however, there have been few experiments examining pathogen community assembly replicated at large-enough spatial scales to inform our understanding of pathogen dynamics in natural systems. Pathogen community assembly may be driven by neutral stochastic colonization and extinction events or by niche differentiation that constrains pathogen distributions to particular environmental conditions, hosts, or vectors.Here, we present results from a regionally-replicated experiment investigating the community of barley and cereal yellow dwarf viruses (B/CYDV''s) in over 5000 experimentally planted individuals of six grass species along a 700 km latitudinal gradient along the Pacific coast of North America (USA) in response to experimentally manipulated nitrogen and phosphorus supplies. The composition of the virus community varied predictably among hosts and across nutrient-addition treatments, indicating niche differentiation among virus species. There were some concordant responses among the viral species. For example, the prevalence of most viral species increased consistently with perennial grass cover, leading to a 60% increase in the richness of the viral community within individual hosts (i.e., coinfection) in perennial-dominated plots. Furthermore, infection rates of the six host species in the field were highly correlated with vector preferences assessed in laboratory trials. Our results reveal the importance of niche differentiation in structuring virus assemblages. Virus species distributions reflected a combination of local host community composition, host species-specific vector preferences, and virus responses to host nutrition. In addition, our results suggest that heterogeneity among host species in their capacity to attract vectors or support pathogens between growing seasons can lead to positive covariation among virus species.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号