首页 | 本学科首页   官方微博 | 高级检索  
     


Activation of an Essential Calcium Signaling Pathway in Saccharomyces cerevisiae by Kch1 and Kch2, Putative Low-Affinity Potassium Transporters
Authors:Christopher P. Stefan  Nannan Zhang  Takaaki Sokabe  Alberto Rivetta  Clifford L. Slayman  Craig Montell  Kyle W. Cunningham
Affiliation:aDepartment of Biology, Johns Hopkins University, Baltimore, Maryland, USA ;bDepartments of Biological Chemistry and Neuroscience, Center for Sensory Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA ;cDepartment of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
Abstract:In the budding yeast Saccharomyces cerevisiae, mating pheromones activate a high-affinity Ca2+ influx system (HACS) that activates calcineurin and is essential for cell survival. Here we identify extracellular K+ and a homologous pair of transmembrane proteins, Kch1 and Kch2 (Prm6), as necessary components of the HACS activation mechanism. Expression of Kch1 and especially Kch2 was strongly induced during the response to mating pheromones. When forcibly overexpressed, Kch1 and Kch2 localized to the plasma membrane and activated HACS in a fashion that depended on extracellular K+ but not pheromones. They also promoted growth of trk1 trk2 mutant cells in low K+ environments, suggesting they promote K+ uptake. Voltage-clamp recordings of protoplasts revealed diminished inward K+ currents in kch1 kch2 double-mutant cells relative to the wild type. Conversely, heterologous expression of Kch1 in HEK293T cells caused the appearance of inwardly rectifying K+ currents. Collectively, these findings suggest that Kch1 and Kch2 directly promote K+ influx and that HACS may electrochemically respond to K+ influx in much the same way as the homologous voltage-gated Ca2+ channels in most animal cell types.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号