首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Simulating Growth and Root-shoot Partitioning in Prairie Grasses Under Elevated Atmospheric CO2and Water Stress
Authors:HUNT  H W; MORGAN  J A; READ  J J
Institution: Natural Resource Ecology Laboratory and Department of Rangeland Ecosystem Science, Colorado State University, Fort Collins, CO, 80523, U.S.A. USDA-ARS, Crops Research Laboratory, Colorado State University, Fort Collins, CO, 80526, U.S.A.
Abstract:We constructed a model simulating growth, shoot-root partitioning,plant nitrogen (N) concentration and total non-structural carbohydratesin perennial grasses. Carbon (C) allocation was based on theconcept of a functional balance between root and shoot growth,which responded to variable plant C and N supplies. Interactionsbetween the plant and environment were made explicit by wayof variables for soil water and soil inorganic N. The modelwas fitted to data on the growth of two species of perennialgrass subjected to elevated atmospheric CO2and water stresstreatments. The model exhibited complex feedbacks between plantand environment, and the indirect effects of CO2and water treatmentson soil water and soil inorganic N supplies were important ininterpreting observed plant responses. Growth was surprisinglyinsensitive to shoot-root partitioning in the model, apparentlybecause of the limited soil N supply, which weakened the expectedpositive relationship between root growth and total N uptake.Alternative models for the regulation of allocation betweenshoots and roots were objectively compared by using optimizationto find the least squares fit of each model to the data. Regulationby various combinations of C and N uptake rates, C and N substrateconcentrations, and shoot and root biomass gave nearly equivalentfits to the data, apparently because these variables were correlatedwith each other. A partitioning function that maximized growthpredicted too high a root to shoot ratio, suggesting that partitioningdid not serve to maximize growth under the conditions of theexperiment.Copyright 1998 Annals of Botany Company plant growth model, optimization, nitrogen, non-structural carbohydrates, carbon partitioning, elevated CO2, water stress,Pascopyrum smithii,Bouteloua gracilis, photosynthetic pathway, maximal growth
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号