首页 | 本学科首页   官方微博 | 高级检索  
     


Stability and fluctuations of amide hydrogen bonds in a bacterial cytochrome c: a molecular dynamics study
Authors:Gernot Kieseritzky  Giulia Morra  Ernst-Walter Knapp
Affiliation:(1) Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, Free University of Berlin, Takustrasse 6, 14195 Berlin, Germany
Abstract:Molecular dynamics (MD) simulations on a bacterial cytochrome c were performed to investigate the lifetime and fluctuations of backbone hydrogen bonds and to correlate these data with protection factors for hydrogen exchange measured by NMR spectroscopy (Bartalesi et al. in Biochemistry, 42:10923–10930, 2003). The MD simulations provide a consistent pattern in that long lifetimes of hydrogen bonds go along with small amplitude fluctuations. In agreement with experiments, differences in stability were found with a rather flexible N-terminal segment as compared with a more rigid C-terminal part. Protection factors of backbone hydrogen exchange correlate strongly with the number of contacts but also with hydrogen-bond occupancy, hydrogen-bond survival times, as well as the inverse of fluctuations of backbone atoms and hydrogen-bond lengths derived from MD simulation data. We observed a conformational transition in the C-terminal loop, and significant motion in the N-terminal loop, which can be interpreted as being the structural units involved in the onset of the protein unfolding process in agreement with experimental evidence on mitochondrial cytochrome c. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users. Gernot Kieseritzky and Giulia Morra both contributed equally to this work.
Keywords:Molecular dynamics  Protein stability  Hydrogen protection factor  Protein unfolding  Native protein structure  Hydrogen exchange
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号