首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of reactions catalyzed by manganese peroxidase from Phanerochaete chrysosporium
Authors:M D Aitken  R L Irvine
Affiliation:Department of Civil Engineering, Center for Bioengineering and Pollution Control, University of Notre Dame, Indiana 46556.
Abstract:Manganese peroxidase (MnP) is one of two extracellular peroxidases believed to be involved in lignin biodegradation by the white-rot basidiomycete Phanerochaete chrysosporium. The enzyme oxidizes Mn(II) to Mn(III), which accumulates in the presence of Mn(III) stabilizing ligands. The Mn(III) complex in turn can oxidize a variety of organic substrates. The stoichiometry of Mn(III) complex formed per hydrogen peroxide consumed approaches 2:1 as enzyme concentration increases at a fixed concentration of peroxide or as peroxide concentration decreases at a fixed enzyme concentration. Reduced stoichiometry below 2:1 is shown to be due to Mn(III) complex decomposition by hydrogen peroxide. Reaction of Mn(III) with peroxide is catalyzed by Cu(II), which explains an apparent inhibition of MnP by Cu(II). The net decomposition of hydrogen peroxide to form molecular oxygen also appears to be the only observable reaction in buffers that do not serve as Mn(III) stabilizing ligands. The nonproductive decomposition of both Mn(III) and peroxide is an important finding with implications for proposed in vitro uses of the enzyme and for its role in lignin degradation. Steady-state kinetics of Mn(III) tartrate and Mn(III) malate formation by the enzyme are also described in this paper, with results largely corroborating earlier findings by others. Based on a comparison of pH effects on the kinetics of enzymatic Mn(III) tartrate and Mn(III) malate formation, it appears that pH effects are not due to ionizations of the Mn(III) complexing ligand.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号