首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Raman spectroscopic study on the structure of ribonuclease F1 and the binding mode of inhibitor.
Authors:H Takeuchi  I Harada  H Yoshida
Institution:Pharmaceutical Institute, Tohoku University, Sendai, Japan.
Abstract:The structure of RNase F1 in aqueous solution has been studied by Raman spectroscopy and compared with that of a homologous enzyme, RNase T1. RNase F1 contains less beta-sheet and alpha-helical structure and more irregular structure than RNase T1. The strength of hydrogen bonding is weak in the beta-sheet and strong in the alpha-helix compared to that of RNase T1. Two disulfide bridges take the gauche-gauche and gauche-trans conformations, respectively. The overall hydrogen bonding of nine Tyr side chains in RNase F1 is very similar to that in RNase T1. Both of two His residues have pKa values around 8.2, which are close to those of the His residues in the active site of RNase T1. Upon binding of 2'-GMP, the hydrogen bonding of some Tyr side chains changes to a more proton-donating state. 2'-GMP is strongly hydrogen bonded with the enzyme at N7 of the guanine ring and takes the C3' endo-syn conformation. The binding mode of the inhibitor is identical to that found for RNase T1. In spite of significant differences in secondary structure, the molecular architecture of the active site seems to be highly conserved.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号