首页 | 本学科首页   官方微博 | 高级检索  
     


Differential Ca2+ sensitivity of RyR2 mutations reveals distinct mechanisms of channel dysfunction in sudden cardiac death
Authors:Thomas N Lowri  Lai F Anthony  George Christopher H
Affiliation:Department of Cardiology, Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff, Wales CF14 4XN, UK.
Abstract:Arrhythmogenic point mutations in RyR2 result in abnormal Ca(2+) release following cardiac stimulation, leading to sudden cardiac death (SCD). Recently, we have demonstrated that significant functional differences exist between SCD-linked RyR2 mutations. Here, we investigated the molecular basis of this heterogeneity and determined the sensitivity of mutant RyR2 channels to cytoplasmic [Ca(2+)] ([Ca(2+)](c)) in living cells. Using streptolysin-O permeabilised human embryonic kidney cells, [Ca(2+)](c) was clamped in cells expressing GFP-tagged wild-type (WT) or SCD-linked RyR2 mutants (L(433)P, N(2386)I, and R(176)Q/T(2504)M). Although resting [Ca(2+)](c) was comparable in all cells, RyR2 mutants were characterised by a profound loss of Ca(2+)-dependent inhibition following caffeine stimulation when compared with WT channels. The ER Ca(2+) store was not perturbed in these experiments. Our findings support the hypothesis that SCD-linked mutational loci may be an important mechanistic determinant of RyR2 dysfunction and indicate that there is unlikely to be a unifying mechanism for channel dysfunction in SCD.
Keywords:Ryanodine receptor   Mutations   Ca2+ release channel   Dysfunction   Arrhythmia   Sudden cardiac death
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号