首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Simultaneous reconstitution of Escherichia coli membrane vesicles with D-lactate and D-amino acid dehydrogenases
Authors:K Haldar  P J Olsiewski  C Walsh  G J Kaczorowski  A Bhaduri  H R Kaback
Abstract:Purified preparations of D-amino acid dehydrogenase Olsiewski, P.J., Kaczorowski, G. J., & Walsh, C. T. (1980) J. Biol. Chem. 225, 4487] and D-lactate dehydrogenase Kohn, L.D., & Kaback, H.R. (1973) J. Biol. Chem. 248, 7012] bind independently to right-side-out and inverted Escherichia coli vesicles and to phosphatidylcholine liposomes without detectable competition. The reconstituted vesicles catalyze D-lactate- and D-alanine-dependent respiration (O2 uptake), proton translocation, and proton/lactose symport. The enzymes do not share common sites of association on either face of the E. coli membrane, and binding of both enzymes to the bilayer appears to be due to nonspecific affinity for the surface rather than specific binding to proteinaceous receptors. Each enzyme, however, appears to reduce a common proton translocating step in the membrane-bound respiratory chain, and substrate-derived electrons are transferred through a common rate-determining redox component that precedes the site of proton translocation. The results suggest that although binding is nonspecific, there is a common site for proton translocation in the membrane between the flavin-linked dehydrogenases and the cytochromes and that this site is accessible by distinct routes of electron transfer from primary dehydrogenases on either surface of the membrane.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号