首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dynamics of the phycotoxin domoic acid: accumulation and excretion in two commercially important bivalves
Authors:Gary D Wohlgeschaffen  Ken H Mann  D V Subba Rao  Roger Pocklington
Institution:(1) Department of Fisheries and Oceans, Bedford Institute of Oceanography, P.O. Box 1006, Dartmouth, NS, Canada
Abstract:Batch cultures of the toxigenic diatomNitzschia pungens Grunow f.multiseries Hasle were fed to blue mussels (Mytilus edulis) and deep sea Atlantic scallops (Placopecten magellanicus) to elucidate conditions under which domoic acid (DA) was accumulated and excreted (depurated). Mussels accumulated the toxin to a maximum level of 13 mgrg g-1, at rates of 0.21 to 3.7 mgrg h-1 g-1, dry weight. Accumulation efficiency (the proportion of accumulated DA to estimated net uptake) ranged from 1–5%. The highest filtration rate of 1.71 h-1 occurred at concentrations of 4–8 × 106 Nitzschia cells 1-1 with no formation of pseudofeces. Depuration rates between fed and starved mussels over a 2 h test period were the same. The depuration rate of domoic acid was about 17% d-1 and did not account for the low uptake efficiencies, so it is suggested that most of the DA is lost from mussels in the solution during the feeding process. Domoic acid accumulation in mussels was dependent on the amount of toxin available, which in turn was a function of the density and growth phase of theNitzschia population. Changes in filtration rate withNitzschia concentration and depuration rate with time can account for the DA levels of mussels collected during toxic episodes in Cardigan Bay, Prince Edward Island, Canada in 1988 and 1989.Scallops accumulated DA (0.39–1.3 mgrg h-1 g-1, more slowly than mussels, however, accumulation efficiencies ranged from 5–100%. Filtration rates remained relatively low and constant at 0.081 h-1. Scallops retained domoic acid longer than mussels, a fact which must be considered in the marketing of whole scallops for human consumption.
Keywords:Nitzschia  neurotoxin  domoic acid  Mytilus  Placopecten
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号