Experimental demonstration of the effect of the unstirred water layer on the kinetic constants of the membrane transport ofd-glucose in rabbit jejunum |
| |
Authors: | Alan B. R. Thomson John M. Dietschy |
| |
Affiliation: | (1) Gastrointestinal-Liver Unit, Department of Internal Medicine, University of Texas Health Science Center, 75234 Dallas, Texas;(2) Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Canada;(3) Present address: Department of Medicine, Division of Gastroenterology, University of Alberta, 8-104 Clinical Sciences Building, T6G 2G3 Edmonton, Alberta, Canada |
| |
Abstract: | Summary The rate of active transport of a probe molecule into the intestinal mucosal cells is determined by the rate of movement of the solute molecule across two barriers, the unstirred water layer and the microvillus membrane of the epithelial cell. Previously a theoretical equation has been derived which describedJd, the velocity of unidirectional flux, as a function of the characteristics of the transport carrier in the membrane and of the resistance of the overlying unstirred water layer (UWL). The predictions of these equations have been tested experimentally by studying the effect of the rate of stirring of the bulk phase on thein vitro uptake ofd-glucose by rabbit jejunum. These studies demonstrated that, first, alterations in the UWL have a profound effect on the magnitude of the apparent affinity constant, xKm*, of the active transport process. Second, at bulk phase concentrations in excess of theKm the passive component of the experimentally determined flux rate becomes of such magnitude as to introduce significant error into the estimate of both the maximal transport rate,Jdm, and the trueKm. Third, as a result of the UWL, the use of double-reciprocal plots to determineJdm andKm leads to the overestimation of these constants. Finally, failure to account for the UWL leads to important quantitative errors describing a number of the characteristics of the transport process: these include an underestimation of the Q10 and the effect of sodium ion on the active transport of glucose in the jejunum. The results confirm that the kinetic characteristics of the uptake of an actively transported molecule are a complex function of the resistance of both the UWL and the mucosal cell membrane, and this transport process can be adequately described by a newly-derived equation. It is apparent that there are serious limitations in the interpretation of much of the previously published data dealing with active transport processes in the intestine, since these studies failed to account for the effect of the UWL. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|