首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Differential Src family kinase activity requirements for CD3 zeta phosphorylation/ZAP70 recruitment and CD3 epsilon phosphorylation
Authors:Lysechko Tara L  Ostergaard Hanne L
Institution:Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
Abstract:The current model of T cell activation is that TCR engagement stimulates Src family tyrosine kinases (SFK) to phosphorylate CD3zeta. CD3zeta phosphorylation allows for the recruitment of the tyrosine kinase ZAP70, which is phosphorylated and activated by SFK, leading to the phosphorylation of downstream targets. We stimulated mouse CTLs with plate-bound anti-CD3 and, after cell lysis, recovered proteins that associated with the CD3 complex. The protein complexes were not preformed, and a number of tyrosine-phosphorylated proteins were inducibly and specifically associated with the TCR/CD3 complex. These results suggest that complex formation only occurs at the site of TCR engagement. The recruitment and tyrosine phosphorylation of most proteins were abolished when T cells were stimulated in the presence of the SFK inhibitor PP2. Surprisingly, CD3zeta, but not CD3epsilon, was inducibly tyrosine phosphorylated in the presence of PP2. Furthermore, ZAP70 was recruited, but not phosphorylated, after TCR stimulation in the presence of PP2, thus confirming the phosphorylation status of CD3zeta. These data suggest that there is a differential requirement for SFK activity in phosphorylation of CD3zeta vs CD3epsilon. Consistent with this possibility, ZAP70 recruitment was also detected with anti-CD3-stimulated, Lck-deficient human Jurkat T cells. We conclude that TCR/CD3-induced CD3zeta phosphorylation and ZAP70 recruitment do not absolutely require Lck or other PP2-inhibitable SFK activity, but that SFK activity is absolutely required for CD3epsilon and ZAP70 phosphorylation. These data reveal the potential for regulation of signaling through the TCR complex by the differential recruitment or activation of SFK.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号