首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Eco-evolutionary metapopulation dynamics and the spatial scale of adaptation
Authors:Hanski Ilkka  Mononen Tommi  Ovaskainen Otso
Institution:Department of Biosciences, University of Helsinki, P.O. Box 65, FI-00014 University of Helsinki, Finland. ilkka.hanski@helsinki.fi
Abstract:We construct a model that combines extinction-colonization dynamics with the dynamics of local adaptation in a network of habitat patches of dissimilar qualities. We derive a deterministic approximation for the stochastic model that allows the calculation of patch-specific incidences of occupancy and levels of adaptation at steady state. Depending on (i) the strength of local selection, (ii) the amount of genetic variance, (iii) the demographic cost of maladaptation, (iv) the spatial scale of gene flow, and (v) the amount of habitat heterogeneity, the model predicts adaptation at different spatial scales. Local adaptation is predicted when there is much genetic variance and strong selection, while network-level adaptation occurs when the demographic cost of maladaptation is low. For little genetic variance and high cost of maladaptation, the model predicts network-level habitat specialization in species with long-range migration but an intermediate scale of adaptation (mosaic specialization) in species with short-range migration. In fragmented landscapes, the evolutionary dynamics of adaptation may both decrease and enhance metapopulation viability in comparison with no evolution. The model can be applied to real patch networks with given sizes, qualities, and spatial positions of habitat patches.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号