首页 | 本学科首页   官方微博 | 高级检索  
     


Synaptotagmin VII is targeted to dense-core vesicles and regulates their Ca2+ -dependent exocytosis in PC12 cells
Authors:Fukuda Mitsunori  Kanno Eiko  Satoh Megumi  Saegusa Chika  Yamamoto Akitsugu
Affiliation:Fukuda Initiative Research Unit, RIKEN (the Institute of Physical and Chemical Research), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan. mnfukuda@brain.riken.go.jp
Abstract:It has recently been proposed that synaptotagmin (Syt) VII functions as a plasma membrane Ca2+ sensor for dense-core vesicle exocytosis in PC12 cells based on the results of transient overexpression studies using green fluorescent protein (GFP)-tagged Syt VII; however, the precise subcellular localization of Syt VII is still a matter of controversy (plasma membrane versus secretory granules). In this study we established a PC12 cell line "stably expressing" the Syt VII-GFP molecule and demonstrated by immunocytochemical and immunoelectron microscopic analyses that the Syt VII-GFP protein is localized on dense-core vesicles as well as in other intracellular membranous structures, such as the trans-Golgi network and lysosomes. Syt VII-GFP forms a complex with endogenous Syts I and IX, but not with Syt IV, and it colocalize well with Syts I and IX in the cellular processes (where dense-core vesicles are accumulated) in the PC12 cell line. We further demonstrated by an N-terminal antibody-uptake experiment that Syt VII-GFP-containing dense-core vesicles undergo Ca2+ -dependent exocytosis, the same as endogenous Syt IX-containing vesicles. Moreover, silencing of Syt VII-GFP with specific small interfering RNA dramatically reduced high KCl-dependent neuropeptide Y secretion from the stable PC12 cell line (approximately 60% of the control cells), whereas the same small interfering RNA had little effect on neuropeptide Y secretion from the wild-type PC12 cells (approximately 85-90% of the control cells), indicating that the level of endogenous expression of Syt VII molecules must be low. Our results indicate that the targeting of Syt VII-GFP molecules to specific membrane compartment(s) is affected by the transfection method (transient expression versus stable expression) and suggested that Syt VII molecule on dense-core vesicles functions as a vesicular Ca2+ sensor for exocytosis in endocrine cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号