首页 | 本学科首页   官方微博 | 高级检索  
     


Genome-wide searching of single-nucleotide polymorphisms among eight distantly and closely related rice cultivars (Oryza sativa L.) and a wild accession (Oryza rufipogon Griff.).
Authors:Lisa Monna  Rieko Ohta  Haruka Masuda  Akiko Koike  Yuzo Minobe
Affiliation:Plant Genome Center 1-25-2 Kan-nondai, Tsukuba, Ibaraki 305-0856, Japan. monna@pgcdna.co.jp
Abstract:We searched the genomes of eight rice cultivars (Oryza sativa L. ssp. japonica and ssp. indica) and a wild rice accession (Oryza rufipogon Griffith) for nucleotide polymorphisms, and identified 7805 polymorphic loci, including single-nucleotide polymorphisms (SNPs) and insertions/deletions (InDels), in predicted intergenic regions. Polymorphisms are useful as DNA markers for genetic analysis or positional cloning with segregating populations of crosses. Pairwise comparison between cultivars and a neighbor-joining tree calculated from SNPs agreed very well with relationships between rice strains predicted from pedigree data or calculated with other DNA markers such as p-SINE1 and simple sequence repeats (SSRs), suggesting that whole-genome SNP information can be used for analysis of evolutionary relationships. Using multiple SNPs to identify alleles, we drew a map to illustrate the alleles shared among the eight cultivars and the accession. The map revealed that most of the genome is mono- or di-allelic among japonica cultivars, whereas alleles well conserved among modern japonica paddy rice cultivars were often shared with indica cultivars or wild rice, suggesting that the genome structure of modern cultivars is composed of chromosomal segments from various genetic backgrounds. Use of allele-sharing analysis and association analysis were also tested and are discussed.
Keywords:sequence   variety-specific   allele   DNA marker   wild rice
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号