首页 | 本学科首页   官方微博 | 高级检索  
     


Photodissociable endogenous ligand in alkaline-reduced cytochrome c peroxidase implicates distal protein tension
Authors:G Smulevich  M A Miller  D Gosztola  T G Spiro
Affiliation:Dipartimento di Chimica, Università di Firenze, Italy.
Abstract:Laser excitation of alkaline- (pH 8.5) reduced cytochrome c peroxidase (CCP) produces resonance Raman (RR) bands arising from both low- and high-spin heme species (nu 3 = 1493/1471 cm-1) even though in the absence of laser excitation the absorption spectrum is characteristic of a purely low-spin species. The high-spin fraction is higher in a stationary than in a rotating sample, indicating that the high-spin contribution arises from photolysis induced by the Raman laser. This conclusion was confirmed by monitoring the absorption spectrum during laser irradiation. Photolability of the low-spin form is somewhat less than that of the CO adduct. The endogenous photolabile ligand is proposed to be the distal histidine residue, His-52. Recent picosecond absorption measurements (Jongeward et al., 1988) show that imidazole ligands in heme proteins do photodissociate but recombine in picoseconds, leading to net photostability on longer time scales. It is proposed that a fraction of the His-52 residues recombine much more slowly in CCP because of protein strain in the ligated form. This strain can also explain the anomalously rapid rate of CO binding to alkaline CCP.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号