首页 | 本学科首页   官方微博 | 高级检索  
     


Rem-GTPase regulates cardiac myocyte L-type calcium current
Authors:Janos Magyar  Carmen E Kiper  Gail Sievert  Weikang Cai  Geng-Xian Shi  Shawn M Crump  Liren Li  Steven Niederer  Nic Smith  Douglas A Andres  Jonathan Satin
Affiliation:Department of Physiology; University of Kentucky College of Medicine; Lexington, KY USA; Department of Physiology; MHSC; University of Debrecen; Debrecen, Hungary; These authors contributed equally to this work.
Abstract:Rationale: The L-type calcium channels (LTCC) are critical for maintaining Ca ( 2+) -homeostasis. In heterologous expression studies, the RGK-class of Ras-related G-proteins regulates LTCC function; however, the physiological relevance of RGK-LTCC interactions is untested. Objective: In this report we test the hypothesis that the RGK protein, Rem, modulates native Ca ( 2+) current (ICa,L) via LTCC in murine cardiomyocytes. Methods and Results: Rem knockout mice (Rem (-/-) ) were engineered, and ICa,L and Ca ( 2+) -handling properties were assessed. Rem (-/-) ventricular cardiomyocytes displayed increased ICa,L density. ICa,L activation was shifted positive on the voltage axis, and β-adrenergic stimulation normalized this shift compared with wild-type ICa,L. Current kinetics, steady-state inactivation, and facilitation was unaffected by Rem (-/-) . Cell shortening was not significantly different. Increased ICa,L density in the absence of frank phenotypic differences motivated us to explore putative compensatory mechanisms. Despite the larger ICa,L density, Rem (-/-) cardiomyocyte Ca ( 2+) twitch transient amplitude was significantly less than that compared with wild type. Computer simulations and immunoblot analysis suggests that relative dephosphorylation of Rem (-/-) LTCC can account for the paradoxical decrease of Ca ( 2+) transients. Conclusions: This is the first demonstration that loss of an RGK protein influences ICa,L in vivo in cardiac myocytes.
Keywords:L-type calcium channel   Ras-GTPase   calcium current   patch-clamp
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号