首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A nuclear-derived proteinaceous matrix embeds the microtubule spindle apparatus during mitosis
Authors:Changfu Yao  Uttama Rath  Helder Maiato  David Sharp  Jack Girton  Kristen M Johansen  Jørgen Johansen
Institution:Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011 Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461 Instituto de Biologia Molecular e Celular, Universidade do Porto, 4150-180 Porto, Portugal.
Abstract:The concept of a spindle matrix has long been proposed. Whether such a structure exists, however, and what its molecular and structural composition are have remained controversial. In this study, using a live-imaging approach in Drosophila syncytial embryos, we demonstrate that nuclear proteins reorganize during mitosis to form a highly dynamic, viscous spindle matrix that embeds the microtubule spindle apparatus, stretching from pole to pole. We show that this "internal" matrix is a distinct structure from the microtubule spindle and from a lamin B-containing spindle envelope. By injection of 2000-kDa dextran, we show that the disassembling nuclear envelope does not present a diffusion barrier. Furthermore, when microtubules are depolymerized with colchicine just before metaphase the spindle matrix contracts and coalesces around the chromosomes, suggesting that microtubules act as "struts" stretching the spindle matrix. In addition, we demonstrate that the spindle matrix protein Megator requires its coiled-coil amino-terminal domain for spindle matrix localization, suggesting that specific interactions between spindle matrix molecules are necessary for them to form a complex confined to the spindle region. The demonstration of an embedding spindle matrix lays the groundwork for a more complete understanding of microtubule dynamics and of the viscoelastic properties of the spindle during cell division.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号