首页 | 本学科首页   官方微博 | 高级检索  
     


Metabolism of radiolabeled glucose by mouse oocytes and oocyte-cumulus cell complexes.
Authors:S M Downs  A M Utecht
Affiliation:Biology Department, Marquette University, Milwaukee, Wisconsin 53201-1881, USA. downss@vms.csd.mu.edu
Abstract:This study was carried out to examine the metabolism of [1-14C]-, [6-14C]-, and [5-3H]glucose by oocyte-cumulus cell complexes (OCC) and denuded oocytes (DO) and to test the hypothesis that metabolism of glucose through the pentose phosphate pathway is associated with meiotic induction. OCC or DO were cultured in hanging drops suspended from the cap of a microfuge tube, with NaOH serving as a trap to collect released 3H2O or 14CO2. Preliminary experiments established that this culture system supports both spontaneous and ligand-induced meiotic maturation. An initial time course experiment (1.5-6 h) showed that hypoxanthine-treated OCC from eCG-primed animals metabolized glucose principally via glycolysis, with an increase to 2.7-fold in response to FSH. Though more [1-14C]glucose was oxidized than [6-14C]glucose, its metabolism was about two orders of magnitude less than that of [5-3H]glucose. Also, FSH significantly increased oxidation of [1-14C]glucose but not [6-14C]glucose, indicating a preferential activation of the pentose phosphate pathway. Pyrroline carboxylate, an activator of the pentose phosphate pathway, increased the activity of this pathway to over 2-fold but failed to affect glucose oxidation through the tricarboxylic acid cycle. Glycolytic metabolism was increased by 25%. The addition of pyruvate to pyruvate-free medium resulted in significant reduction in the metabolism of all three glucose analogues. In OCC retrieved from hCG-injected, primed mice and cultured under hormone-free conditions, metabolic responses were similar to those in FSH-treated complexes cultured in hypoxanthine. DO metabolized glucose, but at a much reduced rate when compared to OCC. Pyruvate reduced the consumption of all three glucose analogues by DO. Pyrroline carboxylate reduced [5-3H]glucose metabolism by DO but had little effect on [1-14C]- and [6-14C]glucose oxidation. These data demonstrate metabolism of glucose by both DO and OCC, but reveal that cumulus cells are more active than the oocyte in this regard. In addition, induction of maturation by FSH, hCG, or pyrroline carboxylate was accompanied by a significant increase in the oxidation of [1-14C]glucose but not [6-14C]glucose by OCC, supporting a proposed role for the pentose phosphate pathway in meiotic induction.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号