The moxFG region encodes four polypeptides in the methanol-oxidizing bacterium Methylobacterium sp. strain AM1. |
| |
Authors: | D J Anderson and M E Lidstrom |
| |
Affiliation: | Department of Microbiology, University of Washington, Seattle 98195. |
| |
Abstract: | The polypeptides encoded by a putative methanol oxidation (mox) operon of Methylobacterium sp. strain AM1 were expressed in Escherichia coli, using a coupled in vivo T7 RNA polymerase/promoter gene expression system. Two mox genes had been previously mapped to this region: moxF, the gene encoding the methanol dehydrogenase (MeDH) polypeptide; and moxG, a gene believed to encode a soluble type c cytochrome, cytochrome cL. In this study, four polypeptides of Mr 60,000, 30,000, 20,000, and 12,000 were found to be encoded by the moxFG region and were tentatively designated moxF, -J, -G, and -I, respectively. The arrangement of the genes (5' to 3') was found to be moxFJGI. The identities of three of the four polypeptides were determined by protein immunoblot analysis. The product of moxF, the Mr-60,000 polypeptide, was confirmed to be the MeDH polypeptide. The product of moxG, the Mr-20,000 polypeptide, was identified as mature cytochrome cL, and the product of moxI, the Mr-12,000 polypeptide, was identified as a MeDH-associated polypeptide that copurifies with the holoenzyme. The identity of the Mr-30,000 polypeptide (the moxJ gene product) could not be determined. The function of the Mr-12,000 MeDH-associated polypeptide is not yet clear. However, it is not present in mutants that lack the Mr-60,000 MeDH subunit, and it appears that the stability of the MeDH-associated polypeptide is dependent on the presence of the Mr-60,000 MeDH polypeptide. Our data suggest that both the Mr-30,000 and -12,000 polypeptides are involved in methanol oxidation, which would bring to 12 the number of mox genes in Methylobacterium sp. strain AM1. |
| |
Keywords: | |
|
|